A Multi-fidelity Stochastic Collocation Method for Parabolic Partial Differential Equations with Random Input Data

نویسندگان

  • Maziar Raissi
  • Padmanabhan Seshaiyer
چکیده

Over the last few years there have been dramatic advances in the area of uncertainty quantification. In particular, we have seen a surge of interest in developing efficient, scalable, stable, and convergent computational methods for solving differential equations with random inputs. Stochastic collocation (SC) methods, which inherit both the ease of implementation of sampling methods like Monte Carlo and the robustness of nonsampling ones like stochastic Galerkin to a great deal, have proved extremely useful in dealing with differential equations driven by random inputs. In this work we propose a novel enhancement to stochastic collocation methods using deterministic model reduction techniques. Linear parabolic partial differential equations with random forcing terms are analysed. The input data are assumed to be represented by a finite number of random variables. A rigorous convergence analysis, supported by numerical results, shows that the proposed technique is not only reliable and robust but also efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-fidelity Stochastic Collocation A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at George Mason University By

MULTI-FIDELITY STOCHASTIC COLLOCATION Maziar Raissi, PhD George Mason University, 2013 Dissertation Director: Dr. Padmanabhan Seshaiyer Over the last few years there have been dramatic advances in our understanding of mathematical and computational models of complex systems in the presence of uncertainty. This has led to a growth in the area of uncertainty quantification as well as the need to ...

متن کامل

A Convergence Analysis of Stochastic Collocation Method for Navier-stokes Equations with Random Input Data

Stochastic collocation method has proved to be an efficient method and been widely applied to solve various partial differential equations with random input data, including NavierStokes equations. However, up to now, rigorous convergence analyses are limited to linear elliptic and parabolic equations; its performance for Navier-Stokes equations was demonstrated mostly by numerical experiments. ...

متن کامل

Approximation of stochastic partial differential equations by a kernel-based collocation method

In this paper we present the theoretical framework needed to justify the use of a kernelbased collocation method (meshfree approximation method) to estimate the solution of highdimensional stochastic partial differential equations (SPDEs). Using an implicit time stepping scheme, we transform stochastic parabolic equations into stochastic elliptic equations. Our main attention is concentrated on...

متن کامل

Numerical solution of nonlinear SPDEs using a multi-scale method

‎In this paper we establish a new numerical method for solving a class of stochastic partial differential equations (SPDEs) based on B-splines wavelets‎. ‎The method combines implicit collocation with the multi-scale method‎. Using the multi-scale method‎, ‎SPDEs can be solved on a given subdomain with more accuracy and lower computational cost than the rest of the domain‎. ‎The stability and c...

متن کامل

A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data

In this paper we propose and analyze a Stochastic-Collocation method to solve elliptic Partial Differential Equations with random coefficients and forcing terms (input data of the model). The input data are assumed to depend on a finite number of random variables. The method consists in a Galerkin approximation in space and a collocation in the zeros of suitable tensor product orthogonal polyno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014